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Overview

Electromagnetic radiation

Fluorescence, excitation and emission spectra
Multicolor imaging with cross-talk

Multicolor imaging of fluorophores with
overlapping spectra

Hyperspectral and spectral imaging

Linear unmixing

Emission fingerprinting
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Fluorescence

Jablonski Energy Diagram
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Excitation and emission spectra

Mormalized Extinction/Emission
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Fluorescence SpectraViewer
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Fluorescence SpectraViewer
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Confocal single - multitrack




Take home message I

Sequential acquisition speed
Bandpass emission filter allows only ca.50% of photons to sensitivity
pass

Doesn't work for fluorophores with closely overlapping labeling

spectra



Different fluorophores have distinct
hues that are discernible
by eye

CGFP

Quadruple-labeled Pseudocolor-
cell - wavelength- coded, spectrally
coded projection  unmixed quadruple
of the spectral Jabeling
image stack. 10



At the time of acquisition, the
spectral info - color - is lost

CGFP



erspectral imaging

Short Wave Infrared
(SWIR)
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Dispersed Spectrum

Near-infrared MIR, IR-A Dt 0.75-1.4 pm

Mear Infrared
Diffraction Grating

Short-wavelength

infrared SWIRIR-B O 1.4-3 prn
W IR TR-C DA,
Mid-wavelength Also called
A A i 3-8 pm
infrared intermediate infrared
(IR Focusing Lenses
Specim AlsaDWL and
Callimating Slit
Holma, H., (2011) L P | th
-ong-wavelength | iR, 1IR-c o 815 pm
infrared o
Incoming Light
15 -
Far infrared FIR
ar infrare 1,000

ioedi
Byrnes, James (2009) wikipecia 5



Fluorescence SpectraViewer

CGFP
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Spectral imaging

Imaging Spectroscopy
Provides the intensity at every Provides the spectral
pixel of the image I(x,y) characteristics of matter I(A).

The energy levels are intrinsic properties of the
molecule and spectrum, therefore, provides a precise
fingerprint of the molecule.

agi Spatial res i 25 i anc) : g oy i .
Imaging patial resolution *-:(“) 11111.[()1[1)1 planc) at SPECLroscopy Spectral resolution 1-20 nm (may
L =5 y
nm depend on )

Field of view ~5() }l]]]'(‘hlg!] f‘i]}l;‘(_‘ll':l] range 400-900 nm
magnification)

Dynamic range 8-16 bits
(256-65, 5306 intensity
levels)

Lowest detectable Shot-noise limited

signal

14
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Spectral Image
provides spectrum at every pixel of
the image I(x.y)

The Spectral Imaging Lambda Stack
(b) Figure 3

Lambda

%
: [
; I"
-l'l
: "'
1.
758"

Fig. 2. Description of a spectral image data set. Each point in the cube
represents a single number and the spectral image s described as K i 15
It can be viewed either as an image fx)) at each wavelength &, oras a
http://zeiss-campus.magnet.fsuedu  Garini et al., 2006

spectrum f{&) at every pixel ().



Linear Unmixing

This technology is based on the assumption that the total detected signal S for
every channel A can be expressed as a linear combination of the contributing
fluorophores S .(Aq,.)-

S(h) = [Intensity - S(A) ] - [Intensity : S(}-u]] - [Intensity : S(}-u)]

sum dye A dye A dye B dye B dye C dye C

With the sighal S detected and the reference emission spectra S known, the
contributions Intensityy.. o c of the fluorophores in the sample are
determined by calculating contribution values that most closely match the
detected signals in the channels.

Zimmermann, 2005; www.zeiss.de



Additive Properties of Fluorophore Spectra

100
El Summed (@) ] (b)
B Spectrum 1 Figure 7
= 80 -
3 EGFP
E —_
o GOR Alexa Fluor 488
= =
£ o 50:50 Mixture
E 75:25 Mixture
2 2
L
&
o
0
475 B00 525 G50 675 600 500 525 550 575 600 625
100 Wavelength {(Nanometers) Wavelength {(Nanometers)
.% g.umined EYFP - s
ectrum
il P —_— T
g
£ gof
o 33:33:33 Mixture 50:35:15 Mixture
§ “f
£ 2}
3
)
o . 7 > -
475 600 5256 550 575 600 600 526 550 575 600 625
Wavelength (Nanometers) Wavelength (Nanometers)

17

http://zeiss-campus.magnet.fsu.edu



Lambda Stack with Cyan, Green, and Yellow Fluorescent Proteins
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+ + I'-. .MH"'\-
| YFP CFP J GFR S

450 500 550 =] 450 500 G50 00 A50 G010 GA0 GO0

A*CFP + .4*GFP + .2*YFP
5'GFP + 5°YFP

450 500 550 GO0

Spectrally mixed pixels combine emission spectra to yield an observed spectrum that is a linear sum of the
components, weighted by their local concentration.

This figure illustrates a few examples that produce relatively similar summed spectra that cannot be unraveled using
filters. It is a linear algebra problem to deconvolve the weighting coefficients of the component spectra from the
measured sum spectra.

19
Dickinson at al. 2001



[GFP, YFP, ™| [~ Chy 7]
GFP. YFP, Chy
GFPs YFP; Chy
GFE; YFP, ol I Ch,
GFPs YFDP; Xa Che
GFP; YFPg - Chs
GFP;  YFP, Chy
| GFP5  YFPy_| | Chy_|

Overdetermined system
(more equations than unknowns)

!
D .

unique solution possible

GFP, YFP )
GFP; YFP; X2 T |

Determined system
(as many equations as unknowns)

!

unique solution possible

!

Com ] [ = [

Underdetermined system
(less equations than unknowns)

!

no unique solution possible

Zimmermann, 2005;



Take home message I1
Why do I want to use it?

Simultaneous acquisition Speed

Longpass emission filter allows most of photons to pass sensitivity

Does work for fluorophores with closely overlapping
spectra labeling
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Take home message III

For the linear unmixing of spectral data, several criteria have to be met:

The number of spectral detection channels must be at least equal to the
number of fluorophores in the sample. If this is not the case, multiple solutions
are possible and no unique result can be attained for spectral separation.

All fluorophores present in the sample have to be considered for the
unmixing calculation. If this is not done, the results will inevitably be falsel The
unmixing calculation is however not affected by taking into account fluorophores
spectra in addition to the ones present in the sample.

Removing any signal not originating from the fluorophores to be analyzed by
background subtraction is an essential prerequisite for the linear unmixing
analysis. Spectrally homogeneous background can be considered as a further
fluorophore

23

Zimmermann, 2005;



Equipment

F

ectral imaging
. In wavelengthes

circular variable filter (A), a set of filters (B), a liguid crystal variable filter {(C) or an acoustooptic variable filter (D). Spatial-scan methods use a dispersion
element, either a grating or prism (E) and the image b 0 be scanned along at least one axis. There are also confocal microscopes that use a dispersive ele-
ment and scan the image point by point. In time-scanning method (F), the whole image & measured after passing through an interferometer (or other opti-
cal elemen In order to caleulate the spectrum at each pixel a mathematical transformation has o be carried out, for example, a Fourier transform. In
“compromise” methods (G only a few spectral ranges are measured and the FOV is limited, but the measurement is fast.

24
Garini et al., 2006



Spatial Scan Spectral Imaging Configurations

Photomultiplier
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- ) -
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Grating Figure §
E 3
Confochl (c)
Pinhole

Multichannel
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LSM 710 & 780

34 Channel QUASAR detection unit used in Lambda Mode

Parallel
acquisition of
lambda stack with
up to 34 elements.
Acquire entire
spectral data with
a single scan!

26
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Leica SP5

www.leica.de



Additional recent developments

Tuneable bandpass filters
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Dual-wavelength cameras

CCD device 2

Optical block

Lens mount

CCD device 1

www.hamamatsu.com



Emission fingerprinting

Can ROIs with single dye
labeling be defined inthe Extraction of
Lambda Stack projection? EI reference spectra

Sample Acqumtlon of
P a Lambda-5tack

&

Lambda-Stack -

Acquisition of
Referenu:e sample A Stack database Linear
Unmixing

Extraction of the —\
P reference spectrum [ ' -:I
Spectral

Lambda-Stack

Extraction of the
reference spectrum

I Multichannel image
Extraction of the
reference spectrum

Fig. 6: Emission Fingerprinting
Lambda-Stack procedure (schemaric).

Au:qU|5|t|on of
Reference sample 5 Lombda-Stack

Lambda-Stack

ol "

Reference sample Acquisition of
a Lambda-Stack
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Example from M21




Intensity
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How to do the acquisition ?

1. Never oversaturate the images - information lost!ll

2. Keep the hardware settings same for reference spectra and actual spectral image:
Same beamsplitters
Same detection window

Same number of channels

3. Include all the fluorophores present in your sample during acquisition for reference spectra

40



Unmixing on the excitation side

Filter 1 Filter 2

0.8

0.6 —

0.4

0.2

0.0-

I I I I T T T 1
460 480 a00 820 540 860 580 B00

YWiavelenoth (nm)

Emission unmixing

Filter 1

| | I | T |
480 500 520 540 560 580 E00

YWavelength (nm)

Excitation unmixing

Only one wide emission filter required
=> high detection efficiency

Linear unmixing formula identical o
emission unmixing

-Exc. Filterwheel
- Monochromator
- Laserlines

However: Sequential a1

Zimmermann, 2005;



Unmixing on the excitation side

Exc. 436/20 Em. 530/50 Exc. 475/40 Em. 530/50

Zimmermann, 2005;



Combination of excitation and emission unmixing

I I I I
460 480 500 520 540 560 580 GO0

Wavelength (him)

2 excitation + 2 emission filters => 4 distinct channels:
a) Em.1 b) Em.2 ¢) Em.1 d) Em.2
=> Separation of up to 4 fluorophores possible 43

Zimmermann, 2005;



Limitations



Examples of factors influencing the efficiency of spectral unmixing

A 164 - B 2o : - : -
14 : | !
K-
E 12— = 15
F £
S 10 s
a o
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= 1]
8 ©
o 47 £ 05 L
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T T T I I T ] I | | 1 I
0 2 4 6 8 10 0 2 4 6 8 10
Number of Channels Number of Channels

A. Decrease of the detector signal to noise ratio in dependence of the number of channels used for sampling the spectral information
B. Dependence of unmixing efficiency on the number of detection channels in the absence and presence of noise.

The relative increase of the unmixing error is independent of the actual noise level. Image error values in the graph are normalized to the image error
obtained for two channel unmixing.

Solid line with circles: relative image error in the presence of detector noise. Broken line with triangles: relative image error without noise

The dSNR decreases according to n-1/2 and thus sampling the spectral information into few detection channels with
broad bandwidth should result in superior quality of the unmixed data compared to sampling into a large number of
detection channels with narrow bandwidths. This observation is relevant for measurements with high detector readout
noise or with low signals

45
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Influence of detector noise and the number of channels on unmixing efficiency

unmixing error
EGFP YFP overlay visualized in a ratio
image

two channels
with a 60nm
bandwidth

o . . . .‘I

with a 12 nm bandwidth

460 to 580 nm

For this purpose, test datasets of simulated EGFP (green) and YFP signals (red) of varying intensities were generated and combined with empty images acquired on a
Zeiss LSM510confoca | microscope under speed and sensitivity settings suitable for in vivo imaging. These background images introduce realistic readout noise into
the simulated images. The created gray values in the EGFP and YFP images are identical and thus co-localize with a 1:1 ratio in every image pixel and thus the signals
appear in the overlay images (third column) as yellow. The number of detectors covering the spectral range between 460and 580 nm was either set to two (top row,
each channel with a 60nm bandwidth) or 10channels (bottom row, each channel with a 12 nm bandwidth). The unmixing error for two and 10 channels can be
visualized in a ratio image (gray scale) of the unmixed EGFP and YFP images. Correctly unmixed pixels should have values of 1.0(gray) whereas deviations are visible
as darker or brighter pixels. The ratio image created with two channels (top row) contains less noise errors than the image created with 10 channels (bottom row).
As can be seen for the stripes of deferent intensities, the errors become more significant for weaker intensities in the image.

46
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Take home message IV

The best unmixing results are obtained with few and wide channels as this
gives higher signals per channel and minimizes possible readout noise problems.

If the gains of the channels can be set independently, the separability of
the signals can be enhanced in this way. Such an approach does however
require fine tuning of the settings, as only optimized settings will give an
improved result. Not properly chosen settings will give inferior results.

Over-determined systems may not inherently give better results, but can be
used without the fine funing of filter settings.

47

Zimmermann, 2005
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