Image Registration in Biology
Overview

- Introduction
- Applications
- Types of Transformations
- Methods and Algorithms
- Resampling of Images
- Registration via Landmarks
- Registration in 3D
- Software
Introduction

- **Image registration** is the process of transforming different sets of data into one coordinate system.
- One image is aligned “registered” to a target image.
- Datasets are taken under different conditions: Different timepoints, viewpoints, animals.
- Common Features are aligned, differing Features become visible.
Introduction

Workflow of Image Registration

Source image → Transformation → Registered image

Target image

Overlay
Applications

- Stack alignment
Applications

- Different timepoints
Applications

- Stitching
 - Arrangement of tiles
 - Satellite images
Applications

- 3D
 - Volume registration
Rectification

- Correction for distortions and misalignments during image acquisition
Types of transformations

There are different possibilities to transform images for alignment:

- **Rigid transformations**
 - Rotation
 - Translation

- **Nonrigid transformations**
 - Scaling
 - Affine transformation
 - Piecewise affine
 - Projective transformation
 - Elastic transformation
Types of transformations

- Rigid transformations
 - Only rotation and translation of image
 - The distance between any two points is conserved
Types of transformations

- Rigid transformations
 - Only rotation and translation of image
 - The distance between any two points is conserved
Types of transformations

- Nonrigid transformations
 - Scaling
 - Lines and Angles are preserved
Types of transformations

- Nonrigid transformations
 - Scaling
 - Straight lines and Angles are preserved
Types of transformations

- Nonrigid transformations
 - Affine Transformation
 - Straight lines and parallelity are preserved
Types of transformations

- Nonrigid transformations
 - Affine Transformation
 - Straight lines are preserved
Types of transformations

- Nonrigid transformations
 - Projective Transformation
 - Straight lines are preserved
Types of transformations

- Nonrigid transformations
 - Projective Transformation
 - Straight lines are preserved
Types of transformations

- Nonrigid transformations
 - Piecewise Affine - partas
Types of transformations

- Nonrigid transformations
 - Elastic (curved) transformations
 - Spline
Resampling of registered Image

- Registered Image has to be „rebuilt“ - resampled
- Different interpolation Algorithms give different results
- Tradeoff between accuracy and computational costs

![Original](image1.png)
![Nearest neighbour](image2.png)
![bilinear](image3.png)
![bicubic](image4.png)
Methods and Algorithms

There is a huge variety of registration algorithms. 3 important categories are:

- Point based algorithms (Landmarks)
 - Scale Invariant Feature Transform (SIFT)
- Intensity based
 - Mutual information based techniques
- Fourier based
Registration via Landmarks

- Fiducial points, distinct features of the image can be located manually or by different detection algorithms
- Can be used as Landmarks aligned by transformation algorithms
- Fiducial points can also be added to a sample (e.g. Beads)
Registration via Landmarks

- SIFT – Scale Invariant Feature Detection
- Automatic detection of fiducial points via distinct patterns in the image
Intensity-based methods

- Mutual information based techniques:
 - The „difference image“ should give the lowest amount of information
 - Through iterative processing one gets closer and closer to the best fit.
Fourier-based methods

- Fourier based correlation
 - Images are transferred to fourier space, rotation is determined, then the „real image“ is rotated by that angle
 - Fast algorithm
 - Only for rigid registrations, Images have to be very similar

Figure 5. By considering the power spectra, translations vanish. Furthermore, in polar coordinates, rotations become translations.
Image Registration in 3D

- Surface based registration in 3D

(a) (b)
Applications

- Stack alignment (optical or physical sections)
- Different timepoints (growing or moving structures)
- Different viewpoints (e.g. stitching of images)
- Different sources (NMR, CT etc.)
- Scene to model registration
- Rectification
Software

- ImageJ/FIJI
- Bitplane Autoaligner
- Amira
Software

- Bitplane Autoaligner
 + Optical Sections work better
 + Fluorescent Images
 + Same file format as Imaris
 + Automated and manual alignment possible

- Physical sections – if distorted, folded or torn
- Brightfield – works better when inverted
- Only rigid transformation
Software

- Amira
 + Automatic and manual alignment of 3D – Stacks.
 + Manual setting of Landmarks in 3D
 + Alignment of 3D Data from different sources (e.g. MRI and CT)
 + Also elastic alignment possible

- Sections – only manual alignment via landmarks
- Only rigid transformation in 2D
Software

- ImageJ Plugins:
 - bUnwarpJ
 - SIFT registration
 - Stackreg
 - TrakEM2
 - Turboreg
Things to consider

- Stack registration
 - Images have to be in the right order (numbered_filename)
 - Right orientation (no flipped images)
 - Good contrast (filtering might help)
 - Bright on dark often works better (invert images)

- Image data is changed during the alignment and resampling process
 - Special caution with nonrigid transformations!!!
Sources

- www.wikipedia.org
- http://fiji.sc
- P. Kostelec et al.: Image Registration for MRI
- Barbara Zitova, Jan Flusser: Image registration methods: a survey
- Michal Irani, Shmuel Peleg: Improving Resolution by Image Registration
- David G. Lowe: Distinctive Image Features from Scale-Invariant Keypoints