Image Registration in Biology

0

Overview

- Introduction
- Applications
- Types of Transformations
- Methods and Algorithms
- Resampling of Images
- Registration via Landmarks
- Registration in 3D
- Software

Introduction

- **Image registration** is the process of transforming different sets of data into one coordinate system.
- One image is aligned "registered" to a target image
- Datasets are taken under different conditions: Different timepoints, viewpoints, animals
- Common Features are aligned, differing Features become visible

Introduction

Workflow of Image Registration

• Stack alignment

• Different timepoints

- Stitching
 - Arrangement of tiles
 - Satellite images

- 3D
 - Volume registration

Rectification

 Correction for distortions and misalignments during image acquisition

There are different possibilities to transform images for alignment:

- Rigid transformations
 - Rotation
 - Translation
- Nonrigid transformations
 - Scaling
 - Affine transformation
 - Piecewise affine
 - Projective transformation
 - Elastic transformation

- Rigid transformations
 - Only rotation and translation of image
 - The distance between any two points is conserved

- Rigid transformations
 - Only rotation and translation of image
 - The distance between any two points is conserved

- Nonrigid transformations
 - Scaling
 - Lines and Angles are preserved

- Nonrigid transformations
 - Scaling
 - Straight lines and Angles are preserved

- Nonrigid transformations
 - Affine Transformation
 - Straight lines and parallelity are preserved

- Nonrigid transformations
 - Affine Transformation
 - Straight lines are preserved

- Nonrigid transformations
 - Projective Transformation
 - Straight lines are preserved

- Nonrigid transformations
 - Projective Transformation
 - Straight lines are preserved

- Nonrigid transformations
 - Piecewise Affine partas

- Nonrigid transformations
 - Elastic (curved) transformations

• Spline

Resampling of registered Image

- Registered Image has to be "rebuilt" resampled
- Different interpolation Algorithms give different results
- Tradeoff between accuracy and computational costs

Original

bilinear

Nearest neighbour

bicubic

Methods and Algorithms

There is a huge variety of registration algorithms 3 important categories are:

- Point based algorithms (Landmarks)
 - Scale Invariant Feature Transform (SIFT)
- Intensity based
 - Mutual information based techniques
- Fourier based

Registration via Landmarks

- Fiducial points, distinct features of the image can be located manually or by different detection algorithms
- Can be used as Landmarks aligned by transformation algorithms
- Fiducial points can also be added to a sample (e.g. Beads)

Registration via Landmarks

- SIFT Scale Invariant Feature Detection
- Automatic detection of fiducial points via distinct patterns in the image

Intensity-based methods

- Mutual information based techniques:
 - The "difference image" should give the lowest amount of information 0
 - Through iterative processing one gets closer and closer to the best fit. 0

one pixel off

Fourier-based methods

- Fourier based correlation
 - Images are transferred to fourier space, rotation is determined, then the ,,real image" is rotated by that angle
 - Fast algorithm
 - Only for rigid registrations, Images have to be very similar

Figure 5. By considering the power spectra, translations vanish. Furthermore, in polar coordinates, rotations become translations.

Image Registration in 3D

• Surface based registration in 3D

(a)

- Stack alignment (optical or physical sections)
- Different timepoints (growing or moving structures)
- Different viewpoints (e.g. stitching of images)
- Different sources (NMR, CT etc.)
- Scene to model registration
- Rectification

- ImageJ/FIJI
- Bitplane Autoaligner
- Amira

- Bitplane Autoaligner
 - + Optical Sections work better
 - + Fluorescent Images
 - + Same file format as Imaris
 - + Automated and manual alignment possible
 - Physical sections if distorted, folded or torn
 - Brightfield works better wen inverted
 - Only rigid transformation

- Amira
 - + Automatic and manual alignment of 3D Stacks.
 - + Manual setting of Landmarks in 3D
 - + Alignment of 3D Data from different sources (e.g. MRI and CT)
 - + Also elastic alingment possible
 - Sections only manual alignment via landmarks
 - Only rigid transformation in 2D

- ImageJ Plugins:
 - bUnwarpJ
 - SIFT registration
 - Stackreg
 - TrakEM2
 - Turboreg

Things to consider

- Stack registration
 - Images have to be in the right order (numbered_filename)
 - Right orientation (no flipped images)
 - Good contrast (filtering might help)
 - Bright on dark often works better (invert images)
- Image data is changed during the alignment and resampling process
 - Special caution with nonrigid transformations!!!

Sources

- www.wikipedia.org
- http://fiji.sc
- P. Kostelec et al.: Image Registration for MRI
- Barbara Zitova, Jan Flusser: Image registration methods: a survey
- Michal Irani, Shmuel Peleg: Improving Resolution by Image Registration
- David G. Lowe: Distinctive Image Features from Scale-Invariant Keypoints