

Image Processing

Basic Image Operations

Point Operations

= all functions that are performed on each pixel of an image, independent of all other pixels in that image

 $I'(u,v) \leftarrow f(I(u,v))$

Local Operations – Neighborhood Operations - Filtering

= a pixel is modified based on some function of the pixel intensities in the neighborhood of this pixel

Linear Filters

Replace each pixel by a linear combination of its neighbors (weighted sum).

Image Data

Modified Image Data

(10*0 + 5*0 + 3*0 + 4*0 + 5*0.5 + 1*0 + 1*0 + 1*1 + 7*0.5)

A convolution is a mathematical function that replaces each pixel by a weighted sum of its neighbors.

The prescription for the linear combination is called the "*convolution kernel*".

Modified Image Data

$$f[m,n] = I \otimes g = \sum_{k,l} I[m-k,n-l]g[k,l]$$

(10*0 + 5*0 + 3*0 + 4*0 + 5*0.5 + 1*0 + 1*0 + 1*1 + 7*0.5)

Local Operations

 $f[m,n] = I \otimes g = \sum I[m-k,n-l]g[k,l]$ k,l

(10*0 + 5*0 + 3*0 + 4*0 + 5*0.5 + 1*0 + 1*0 + 1*1 + 7*0.5)

Linear Filters

Linear Filters

-Box Filter/Mean Filter

- Gauss Filter
- Sharpen Filter
- Laplace Filter

Box/Mean Filter

The value of a pixel is replaced by the mean of the pixel intensity in neighbor pixels

Average of a 3x3 matrix

1	5	3
4	5	1
1	1	6

Convolution kernel

3	

Modified Image Data

Image Data

Box/Mean Filter

The value of a pixel is replaced by the mean of the pixel intensity in neighbor pixels

- low-pass filter
 - = "smoothing"
 - = a filter that passes low-frequency signals but

attenuates (reduces the amplitude of) signals with higher frequencies

+ number of successive applications+ simplest filter – fast

• kernel size influence

original

3x3

• low-pass filter (smoothes small objects)

• kernel size influence

+ number of successive applications

- + simplest filter fast
- + averages noise, does not eliminate it

+ works against Gaussian and Poisson noise

original

- low-pass filter (smooths small objects)
- kernel size influence
- + number of successive applications
- + simplest filter fast
- + averages noise, does not eliminate it
- + works against Gaussian and Poisson noise
- blurs images small details are lost (low pass filter)
- smoothes edges dramatically

original

- low-pass filter (smooths small objects)
- kernel size influence
- + number of successive applications
- + simplest filter fast
- + averages noise, does not eliminate it
- + works against Gaussian and Poisson noise
- blurs images small details are lost (low pass filter)
- smoothes edges dramatically
- fails for salt & pepper noise

GaussFilter

Gauss Filter

In probability theory, the **normal** (or **Gaussian**) **distribution**, is a continuous probability distribution that is often used as a first approximation to describe real-valued random variables that tend to cluster around a single mean value. The graph of the associated probability density function is "bell"-shaped, and is known as the Gaussian function or bell curve

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 μ ... mean (locat

. *mean* (location of the peak) . the *variance* (the measure of the width of the distribution).

Gauss Filter

1/16	2/16	1/16
2/16	4/16	2/16
1/16	2/16	1/16

Sharpen Filter

Sharpen Filter

- Used to enhance the edges of objects by enhancing the changes of grayscale values that occur over a short distance.
- High Pass Filter (tends to retain the high frequency information within an image while reducing the low frequency information)

Sharpen Filter

Combined Filter

especially filters designed for edge detection are often a series of different kernels

Combined Filters

Non-Linear Filters

Non-Linear Filters

The output is not a linear function of its input.

Can produce different effects on signal and noise under certain circumstances.

- Rank Filter

- Median Filter
- Min/Max Filter

Rank Filter

The value of a pixel is replaced a specified value of the pixel intensity in neighbor pixels

Median filtered:

The outlier value has been completely removed from the dataset

3x3 median filtered

- + Typically good for "Salt & pepper" noise removal
- + Eliminates noise

original

+ Edge-preserving

- Slower than mean (not such a problem anymore... computers are fast)

- NOT linear

Kuwahara Filter

Kuwahara Filter

- Let us have a square image of size J=4L+1
 - compute average µ_i and standard deviation s_i of each region i=1..4.
 - center pixel CP is assigned the average value of the region having the smallest standard deviation: $CP = \{\mu_i : s_i = \min\{s_i \mid i = 1..4\}\}$

Exercise

Exercise

• use images 360-normal.tif, 360-weak.tif, 480-normal.tif, 480weak.tif and 360-weak-saltPepper

 explore different filters on low and high noise images, with fine and coarse structures – report results

• convolve images with different Kernels – see what happens

Implement edge detection filters

Prewitt	Sobel	Kirsch
1 1 1 -1 0 1 0 0 0 -1 0 1 -1 -1 -1 0 1 First Pass Second Pass	1 2 1 -1 0 1 0 0 0 -2 0 2 -1 -2 -1 -1 0 1 First Pass Second Pass	5 5 5 5 -3 -3 0 -3 5 0 -3 -3 -3 -3 -3 -3 -3 First Pass Second Pass 5 -3 -3 -3 -3 5 -3 -3 -3 -3 -3 -3 -3 5 0 -3 5 0 -3 5 0 -3 5 0 -3 5 0 -3 5 0 -3 5 -3 -3 5 5 -3 -3 -3 -3 5 0 -3 5 0 -3 5 5 -3 5 -3 -3 5 5 -3 -3 5 5 -3 Third Pass Fourth Pass Fourth Pass -3 <td< td=""></td<>